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Table I. 13C NMR Chemical Shift in D2O 

compd 13C chemical shift, ppm 

(CH3CH2)2NH* 
CH3CH2NFV 

100.06 (Ci), 79.35 (C4), 71.23 (C3), 70.19 
(C, C5), 58.70 (C6), 45.45 (C -NHR), 
37.08 (C-NH2) 

100.45 (CO, 79.66 (C4), 71.75 (C3), 70.39 
(C2, C5), 58.77 (C6), 47.66 (C-NHR) 

44.1 (C-NH-C) 
35.9(C-NH2) 

" Acetone was used as an internal standard. b L. F. Johnson and 
W. C. Hankowski, "Carbon-13 Spectra", Wiley-Interscience, New 
York, 1972. c E. Breitmaier, G. Haas, and W. Voclter, "Atlas of 
Carbon-13 NMR Data", Plenum Press, New York, 1976. 

solvent molecule(s) was usually bound much tighter than by 
parent cyclodextrin. Found: C, 45.21; H, 6.53; N, 3.02. Calcd 
for C88H,48N4O66-(CHj)2NCHO: C, 45.69; H, 6.54; N, 2.93. 
Calcd for C88Hi48N4O66: C, 45.58; H, 6.44; N, 2.42. 

The NMR spectra of both 2 and 3 show the characteristic 
absorptions of the protons a to amino nitrogen at 8 3.4 in D2O: 
2, 5 3.4 (12 H, N-CH2), 3.7-4.9 (38 H), 5.4 (7 H, C, H); 3, 
8 3.4 (16 H, N-CH2), 3.6-4.8 (76 H), 5.4 (14 H, C, H). More 
characteristic are the ' 3C NMR spectra of 2 and 3; the former, 
as listed in Table I, shows two types of methylene absorption 
adjacent to the primary and secondary amino groups while no 
methylene absorption adjacent to the primary amino group is 
observed in duplex cyclodextrin (3). 

The present host duplex cyclodextrin shows unique and in­
teresting binding characteristics toward guest molecules having 
two hydrophobic recognition sites. One typical example of this 
multiple recognition is the binding of 6-p-toluidinylnaph-
thalene-2-sulfonate (TNS) where its fluorescence maximum 
at 480 nm in aqueous solution8 shifted to 444 nm in the pres­
ence of duplex cyclodextrin. This large shift due to the hy­
drophobic environment of the host-guest inclusion complex 
is approximately equal to that of 2:1 /3-cyclodextrin-TNS 
complex but much larger than that of the corresponding 1:1 
complex as the following data suggest: aqueous, 480; /3-duplex 
1:1 complex, 444; /3-CD 1:1 complex, 457; /3-CD 2:1 complex, 
444; /3-CD(N2C2H6)2 (2) 1:1 complex, 452 nm. This suggests 
that the binding of TNS by duplex cyclodextrin is very similar 
to that involved in 2:1 /?-CD inclusion. Another example is 
binding of methyl orange where the association constant with 
duplex cyclodextrin was 3160 M - ' , much higher than that with 
the corresponding /3-CD tetramine 2 (520 M - 1) , demon­
strating the additive contribution of the second hydrophobic 
binding site.9 These examples strongly support the multiple 
recognition mechanism for binding by duplex cyclodextrin as 
shown in 4. 

(CH3J2N-
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6C,6A 
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( 6 A , 6 C ) 
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6A,6D. 

6A,6D 

. 6 A , 6 D . 

6D,6A 
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Bond Fixation in Annulenes. 5. 
Absolute Configuration and Chiroptical Properties 
of Optically Active 1,2,3-Trimethyl- and 
1,2,3,4-Tetramethylcyclooctatetraenes1 

Sir: 

Whereas the smaller annulene ring systems (cyclobutadiene 
and benzene) are too planar to support optical activity2 and 
the larger annulenes are too flexible to maintain chirality,3 the 
medium-sized cyclooctatetraene nucleus is ideally suited for 
probing the interaction of light with a cyclic conjugated 
polyolefin network. The successful realization of this objective 
is dependent upon adequate inhibition of the high susceptibility 
of these tub-shaped molecules toward ring inversion and 
ir-bond alternation,4 processes which normally result in facile 
racemization. The control of these dynamic phenomena having 
been mastered,''5^7 we can now report the first absolute con-
figurational assignments to two chiral [8]annulene hydro­
carbons and the elucidation of their chiroptical properties. 

The assignment of absolute stereochemistry to (-)-5 began 
by sequential reaction of fully resolved acid ester la, [a]25D 
-13.8° (c 10.8, C2H5OH),1 with oxalyl chloride and excess 
(y?)-(+)-a-methylbenzylamine to give lb, mp 95-97 0C, 
[a]25

D + 66.5° (c 18.8, C2H5OH).8 This compound was iso-
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lated as monoclinic crystals of space group Plx with lattice 
constants a = 10.084 (3), h = 9.429 (3), c = 18.234 (4) A; /3 
= 96.36 (2)°. An observed and calculated density of —1.16 
g/cm3 indicated four molecules in the unit cell or two mole­
cules of composition Ci8H23NO3 in the asymmetric unit. All 
unique diffraction maxima with 9 < 57° were collected (Cu 
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Figure 1. A structural view of (+)-lb as seen by X-ray analysis. 

Figure 2. A structural view of (+)-7b as seen by X-ray analysis. 

Ka radiation) and a total of 1663 (67%) reflections were 
considered observed after correction for Lorentz, polarization, 
and background effects (F0

2 > 3<r(F0
2)). 

In spite of the size of the asymmetric unit and the paucity 
of high angle scattering data, the structure emerged un­
eventfully from standard direct methods.9 Tables describing 
fractional coordinates and temperature factors, bond distances 
and angles, as well as observed and calculated structure factors 
have been placed in the microfilm version of the journal. As 
the computer generated perspective drawing (Figure 1) indi­
cates, our prior knowledge of the absolute configuration of the 
a-methylbenzylamine moiety permits depiction of the correct 
absolute stereochemistry for the remainder of structure lb. 

It then follows that the precedented10 sequence of steps 
employed to transform (—)-la to (+)-2 and subsequently 3, 
[a]25o+141° (c 12.7, hexane), must deliver a product having 
the IS,6R configuration. Furthermore, since the disrotatory 
opening of 4, prepared by regiospecific bromination-dehy-
drobromination of (+)-3, likely proceeds with full orbital 
symmetry control,5 this optically active cyclooctatetraene, 
t«]25D —148° (c 21.1, diglyme), must have the absolute ste­
reochemistry indicated.11 

To gain access to (+)-9, diacid 6a, obtained by hydrolysis 
of the citraconic anhydride-1,3-pentadiene adduct,12 was re­
solved with (7?)-(+)-a-methylbenzylamine. The enantiomeric 
purity of this material, [a]25

D -110.1° (c 98.2, C2H5OH), was 
established by conversion via 6b* (Ac2O, then CH3OH, reflux) 
to 6c* whose ' H NMR spectrum showed a single methyl ester 
absorption at 5 3.62. For comparison, amide prepared from 
racemic 6b displayed a pair of equally intense signals at 5 3.62 
and 3.56. Bromolactonization of optically pure 6a proceeded 
with full stereochemical control13 to give bromolactone 7a, 
[a]25

D -25.68° (c 25.9, CH2Cl2). The derived amide 7b, 
[a]25

D + 10.75° (c 14.6, CH2Cl2), formed stout acicular 
crystals which proved to be nicely suited to X-ray analysis by 
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Figure 3. UV (—) and CD (—) spectra of (-)-5 (top) and of (-)-9 (bot­
tom). fl-Hexane was used as solvent. 

7o , R -OH 6 a , R - R - O H 
~ b , R-NHCHC6H-(R) ~ J , R ' - O H , R 2 = O C H J 

' c, R'= NHCHC6H-(R), 
CHj ~' 1 6 5 — * 

CH3 

R2=OCHj 

CH3 'CH3 

8 

3 CH3 

heavy-atom techniques: a = 10.675 (7), b 18.047 (8), c = 
19.533 (11) A; density, 1.34 g/cm3 with two molecules of 
composition CIsH22BrNOs per asymmetric unit. A total of 
1505 (52%) reflections were judged observed (see supplemental 
material). Figure 2 shows the final X-ray model with absolute 
stereochemistry. 

Starting with optically pure (—)-6a, cyclobutene 8 was ob­
tained as a colorless liquid, [a]25D —109.3° (c 38.2, pentane). 
Bromination-dehydrobromination of material of this quality 
led to 9, [a]25

D -I- 87.8° (c 7.8, pentane), whose absolute ste­
reochemistry must be as indicated. This substance was not 
optically pure, however, as revealed through application of an 
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alternative method of resolution14 which afforded the levoro-
tatory en^ntiomer of 9 having substantively higher rotatory 
power, [«]2 5D -310° (c 0.15, hexane). 

Whereas 5 belongs to the C\ point group, 9 has Ci symme­
try; both molecules are therefore dissymmetric although 5 is 
also asymmetric.15 Because the parent cyclooctatetraene ring . 
system is achiral (Djd symmetry), any chiral moiety contained 
therein must be balanced by an enantiomeric moiety, a com­
mon occurrence. Thus, if C1-C2-C3-C4-C5 has left-handed 
helicity, the segment C1-C8-C7-C6-C5 has the enantiomeric 
right-handed helicity. For this reason, the substituted deriva­
tives 5 and 9 cannot be referred to as "inherently dissymme­
tric" hydrocarbons, a designation which would be appropriate 
only if the substituents caused the [8]annulene framework to 
distort significantly to a chiral geometry or if the methyl groups 
participated so significantly in the electronic transitions under 
consideration that they would have to be considered an integral 
part of the chromophore. 

In the present circumstances, therefore, neither the ho-
moannular diene helicity rule16 nor the allylic chirality rule17 

apply. Twisting about individual double bonds18 similarly 
cannot be playing a significant role. In actual fact, the two CD 
curves taken in conjunction with the UV spectra (which show 
minimal 7r-7r interaction, Figure 3) clearly reveal that "con­
jugated" polyene systems with distinct near-UV absorptions 
are not being dealt with. Rather, these systems consist essen­
tially of four virtually unconjugated ethylene chromophores 
coupled principally by the electrostatic potential between the 
7T -» 7T* transition dipoles. 

The CD spectra of the pair of optically active cyclooctate-
traenes unmistakably reveal that antipodes of like sign belong 
to the same enantiomeric series. The curve due to 9 is more 
complex, however, perhaps because of a higher concentration 
of the bicyclo[4.2.0]octatriene valence tautomer.5 Notwith­
standing, it remains difficult to know at this time which CD 
band is pertinent for any given analysis. Obviously, further 
study of the matter is required, a goal currently being pursued 
in these laboratories. 
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Bond Fixation in Annulenes. 6. Equalization of 
Ring Inversion and Bond Shifting Energetics 
in Methyl-Substituted Cyclooctatetraenes. 
Use of Buttressing Effects for Comparing 
Transition-State Geometries1 

Sir: 

Cyclooctatetraenes are recognized to be capable of con­
formational ring inversion (RI) and bond shifting (BS).2 While 
it is generally accepted that RI occurs through the D^ planar 
alternate transition state 1 (AG* = 12-15 kcal/mol for mo-
nosubstituted derivatives3), the mechanism for BS has re­
mained controversial. The planar symmetric D%h species 2 has 
been advanced to explain the permutation of ring carbon 
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